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(57) ABSTRACT

Receiver-based methods for controlling TCP sender behav-
ior in cellular communications networks with large buffer
sizes are disclosed. One method includes, at a TCP receiver,
receiving packets from a TCP sender. The method further
includes determining, based on the packets, a minimum
round trip time and a moving average round trip time for
cellular network carrying the packets between a TCP sender
and a TCP receiver. The method further includes adaptably
adjusting a received window size to advertise to the TCP
sender based on the minimum round trip time and the
moving average round trip time. The method further
includes advertising the adjusted received window sizes to
the TCP sender.

10 Claims, 14 Drawing Sheets

RECEIVE PACKETS FROM A TCP SENDER

1300

CONTINUALLY DETERAINE, BASED ON
THE PACKETS, A MINIMUM ROUND TRIP
TIME AND A HOVING AVERAGE ROUND
TRIPTIME FORA CELLULAR NETWORK ™300
CARRYING THE PACKETS BETWEEN THE
TCP SENDER AND THE TCP RECEIVER

!

ADAPTIVELY ADJUST RECEIVE WINDOW
SIZE TQ ADVERTISE TO THE TCP SENDER
BASED ON THE MINIMUM ROUND TRIP
TIME ANDETHE MOVING AVERAGE ROUND

RSET

TRIP TIM
'

ADVERTISE WINDOW SIZE TO TCP SENDER

1306




US 9,444,688 B2
Page 2

(51) Int. CL

HO4W 48/16 (2009.01)
HO4W 48/18 (2009.01)
HO4L 12/815 (2013.01)
HO4W 28/02 (2009.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2009/0222553 Al
2010/0020686 Al
2011/0013516 Al

9/2009 Qian et al.
1/2010 Lee et al.
1/2011 Black et al.

OTHER PUBLICATIONS

Yang et al., “TCP Congestion Avoidance Algorithm Identification,”
IEEE, 2011 31st International Conference on Distributed Comput-
ing Systems, pp. 310-321 (Jun. 2011).

Gettys et al., “Bufferbloat: Dark Buffers in the Internet,” ACM
Queue, pp. 1-15 (May-Jun. 2011).

Reed, “What’s wrong with this picture?”, pp. 1-2 (Sep. 2009).
Qian et al., “TCP Revisited: A Frest Look at TCP in the Wild,” In
Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, IMC °09, pp. 1-14 (2009).

Liu et al., “Experiences in a 3G Network: Interplay between the
Wireless Channel and Applications,” MobiCom *08, pp. 1-12 (Sep.
2008).

Rhee et al., “CUBIC: A New TCP-Friendly High-Speed TCP
Variant,” pp. 1-6 (Jul. 2008).

Wei et al,, “FAST TCP: Motivation, Architecture, Algorithms,
Performance,” IEEE/ACM Transactions on Networking, vol. 14,
No. 6, pp. 1246-1259 (Dec. 2006).

Lan et al., “A measurement study of correlations of Internet flow
characteristics,” pp. 1-28 (Feb. 24, 2006).

Xu et al., “Binary Increase Congestion Control (BIC) for Fast
Long-Distance Networks,” IEEE INFOCOM, pp. 1-11 (Mar. 2004).
Mathis et al., “Web100: Extended TCP Instrumentation”, SIGCOM
Comput. Commun., pp. 1-11 (Jul. 2003).

Liu et al., “A framework for opportunistic scheduling in wireless
networks,” Computer Networks, vol. 41, pp. 451-474 (2003).
Feng et al., “Dynamic Right-Sizing: An Automated, Lightweight,
and Scalable Technique for Enhancing Grid Performance,” In
Proceedings of the 7th IFIP/IEEE International Workshop on Pro-
tocols for High Speed Networks, pp. 69-83 (Apr. 22-24, 2002).
Athuraliya et al., “REM: Active Queue Management,” IEEE Net-
work, pp. 48-53 (May/Jun. 2001).

Floyd et al., “The NewReno Modification to TCP’s Fast Recovery
Algorithm,” RFC 2582, pp. 1-37 (Apr. 1999).

Brakmo et al., “TCP Vegas: New Techniques for Congestion Detec-
tion and Avoidance,” TR 94 04, pp. 1-19 (Feb. 16, 1994).

Floyd et al., “Random Early Detection Gateways for Congestion
Avoidance,” IEEE, vol. 1, No. 4, pp. 397-413 (Aug. 1993).



U.S. Patent

Sep

. 13,2016

Sheet 1 of 14

—

g

[=—4

o
T

RTT (ms)

TIMES(S)
(A) ROUND-TRIP TIME

US 9,444,688 B2

ANDROID OVER AT&T HSPA ——

ANDROID QVER SPRINT EV-DO ------
ANDROID OVER VERIZION LTE -
iPHONE OVER AT&T HSPA —-—--

600000

500000

400000

300000

CWND (BYTES)

200000 |-

100000

0

10 15 20 25
TIMES(S)
(B) CONGESTION WINDOW

FIG. |



US 9,444,688 B2

Sheet 2 of 14

Sep. 13, 2016

U.S. Patent

09

MOGNIM NOILSIONO) (8)
(SISINIL
06 O 0 0¢ 0L 0

...... INI¥dS
— 13lY

0
000002
00000¥
000009
000008
900+31

900+e7°1

900+o¢1

7 94

(S1LAG) ANAD

IWLL dTNL-ONNOY (V)
(SISIWIL

(stu) 11y

I

N

]
=]
=]
=
o

_ 00001

...... INT¥dS
— 13V



US 9,444,688 B2

Sheet 3 of 14

Sep. 13, 2016

U.S. Patent

£
MOGNIM NOILSIONO) (9) JWLL dT¥1-ANNoY (V)
(SISIWIL (S)SIWIL
0ZL 00L 08 09 OF 07 oo 0ZL o00L 08 09 O O0Z 0
[ | | | | | [ | | | c

- - 00005 0001

. (000001 2 000z
S ooog =

- 1000051 = E}
S 000%

g - 000002 0005

- - 000052 0009

, 00000€ , 000,
S— ) —IBlY



US 9,444,688 B2

Sheet 4 of 14

Sep. 13, 2016

U.S. Patent

1ndHINOYHL (3)
(SISIWIL

G OF SEO0E S 0C SLOL S O

..... 88ZVLS
— p12SE -11NV430

0
£00+3¢
10031

100961
[00+3g

100+3¢
00+2¢

[00+36°¢

(39ATIMONMDV S3LA9

b 91

MOQNIM NOLLSIONO) (8)
(SISIWIL

I I I I I I
-
/
/

Gh O SEOE ST OT GLOL § O

4

| |
..... 88LVLS
— 12SE -11NV430

0
000001
000002
00000¢€ =2
00000
000005

) ANAD

(SILA

IWLL dIYL-ONNOY (V)

(S)SawIL

Sh O S€ 0E S 06 SL OL § O

..... 88CVTS
— vp12SE -11NV430

001
00¢
00€
00¥
00§
009
00£
008
006
0001
0011

(st) L1y



U.S. Patent Sep. 13,2016 Sheet 5 of 14 US 9,444,688 B2

BASE STATION
{g;

-

[\

ey e
— [

ANDROID PHONES IN NCSU, USA SERVER IN N\CSU, USA

FIG.5



US 9,444,688 B2

Sheet 6 of 14

Sep. 13, 2016

U.S. Patent

IWIL dTYL-ONNOY (8)

Y (I0¥ANY GIHINOINN

OI¥VYNIDS
8 L 9 ¢ v ¢ T 1
i) l
s TR ﬁw N L N
A Ny
Nt |
1S40

002
00
009
008
0001
0021
00v1

(sw) JWIL dT¥1-QNNOY

93

LNdHINOYHL (V)

OIYNIS

8 L 9 & ¥

£

A

L

1 SY0
= (IOYANYV AIHINOLNN

0
000005
900+01

900+95°1
900+¢

900+35°C
900+¢

900+95°¢
900+

(sdq) LNdHONOYHL



U.S. Patent Sep. 13,2016 Sheet 7 of 14 US 9,444,688 B2

UNTOUCHED ANDROID —— UNTOUCHED ANDROID ——
450000 o 450000 aw o
400000 } | 400000} -

__ 350000(- Ao 3500001 ]

&2 300000 L i ET300000( b

= 250000 LI E50000 , :

= 200000 Koot 2200000 1

= 150000 ! 150000 1
100000 | 100000~ 1

50000 50000/ - -~ 1
I AL L
TIMES(S TIMES(S)
) RecENE oo (B) CONGESTION WINDOW
UNTOUCHED ANDROID —— UNTOUCHED ANDROID ——
QRS -- - QRS ----
900 T T 8e+006 T | |
800 |t | 1 27606 .
700 ) 1 Z 6e+0061
—geooi ho | B 5e06f
= 500 | o] S 4es006r
| -t

== 400 |} [T (0 3e+006 1
300 [ h T 3 2e+006
200 ¢ ‘ le+006 .2

v ] ] ] | | ] ]
002 4 5 8 10 12 14 %7 4680121
TIMES(S) TIMES(S)

(C) ROUND-TRIP TIME (D) THROUGHPUT

FIG.7



US 9,444,688 B2

Sheet 8 of 14

Sep. 13, 2016

U.S. Patent

IWLL dTaL-aNNoY () 89 MOGNIM JAD3Y (V)
(SISIWIL (SISIWIL
002 051 00l 0s 002 051 001 05 0
T T T T T T O
00005
000001
3
= 000051
000002
- - 000052
: 00000
—-- 4D —-- SN0
—— QIOYANY GIHDNOINN —— QI0¥ANY GIHDNOINN

(SILAG) ONMY



US 9,444,688 B2

Sheet 9 of 14

Sep. 13, 2016

U.S. Patent

001

WIL dT¥1-aNNOY (8)

|__;

v
Vo
|

\

!
\
he
T

--- 1D

— (I0YANY QIHNOINN

00¢

0001
00S1
0002
0052
000€
00¢€
000

(su) LIy

MOQNIM JAIDFY (V)
(SISIWIL

001 08 09 114 02 0

--- 51D
— (I0¥ANY aIHINOINN

00002

0000%

00009

00008

000001

0000z L

(SI1A8) ONMY



US 9,444,688 B2

Sheet 10 of 14

Sep. 13, 2016

U.S. Patent

08

0L

09

IWLL d14L-NNOY (8)

(SISIWIL
14

0$

0€

02

n

1
(V)
¥

A
\ \/
1]

1
-
i
l/

A

\

f
\ Ll

1.0, 1

- 5D

— (IOYANY QIHDNOLNN

0001
0002
000€¢
000¥
0005
0009
000/
0008
0006

(st) 11y

01 91

MOGNIM IAIDY (V)
(S)SIWLL
08 0/ 09 05 OF OF

—_—
-
—~

-

- SMD
—— QI0¥QNY GIHDNOLNN

00005

000001

00001

000002

000052

00000¢€

(SILA4) ONMY



US 9,444,688 B2

Sheet 11 of 14

Sep. 13, 2016

U.S. Patent

INdHINOYHL (4)
AV 10 IWIL

00-¢Z 00-61 00-9L 00-€L 00-01 00-£0 00-0 00-1

Y
- (I0YANV @IHINOINN

0
0

900+31
900+9Z
900+9¢
900+3
900+35
900+39
900+,

[l 9

(sdq) IndHINOYHL

IWLL dT¥L-QNNOY (V)
AV@ 40 IWIL

00-¢c¢ 00-61 0091 00-€L 00-0L 00-£0 00-70 00-10

. U0
- QIOYONY GIHDNOIND

0

00S

0001

(sur) L1y

00s1

0002

005¢



U.S. Patent Sep. 13,2016 Sheet 12 of 14 US 9,444,688 B2

106
/]02 /wo

TCP RECEIVER
TCP SENDER DYNAMIC

RECENVE | - 104

WINDOW SIZE | )

ADJUSTMENT
MODULE

FIG. 12



U.S. Patent

Sep. 13, 2016 Sheet 13 of 14

RECEIVE PACKETS FROM A TCP SENDER

A

CONTINUALLY DETERMINE, BASED ON
THE PACKETS, A MINIMUM ROUND TRIP
TIME AND A MOVING AVERAGE ROUND
TRIP TIME FOR A CELLULAR NETWORK
CARRYING THE PACKETS BETWEEN THE
TCP SENDER AND THE TCP RECEIVER

[ \C1302

[

ADAPTIVELY ADJUST RECEIVE WINDOW
SIZE TO ADVERTISE TO THE TCP SENDER
BASED ON THE MINIMUM ROUND TRIP
TIME AND THE MOVING AVERAGE ROUND
TRIP TIME

|

ADVERTISE WINDOW SIZE TO TCP SENDER

FIG. 13

US 9,444,688 B2



U.S. Patent Sep. 13,2016 Sheet 14 of 14 US 9,444,688 B2

1400

r 1402

INCREASE
RWND

r 1404

DECREASE
RWND

RTTmn/RT Test

>

THRESHOLD?

FiG. 14



US 9,444,688 B2

1

RECEIVER-BASED METHODS, SYSTEMS,
AND COMPUTER READABLE MEDIA FOR
CONTROLLING TCP SENDER BEHAVIOR
IN MOBILE COMMUNICATIONS
NETWORKS WITH LARGE BUFFER SIZES

PRIORITY CLAIM

This application claims the benefit of U.S. Provisional
Patent Application Ser. No. 61/543,128, filed Oct. 4, 2011,
and U.S. Provisional Patent Application Ser. No. 61/648,056
filed May 16, 2012; the disclosures of which are incorpo-
rated herein by reference in their entireties.

TECHNICAL FIELD

The subject matter described herein relates to methods
and systems for controlling TCP sender behavior in cellular
communications networks with large buffer sizes. More
particularly, the subject matter described herein relates to

BACKGROUND

TCP is the dominant transport layer protocol of the
current Internet, carrying around 90% of the total traffic [15,
10]. Hence, the performance of TCP is of utmost importance
to the well-being of the Internet and has direct impacts on
user experiences. Although TCP is a well-studied area where
a large number of improvements have already been pro-
posed, TCP performance over cellular networks (e.g., 3G or
4G networks) has not been given adequate attention.

With the exponential growth of hand-held devices like
smart phones and tablet computers, TCP performance in
cellular networks is becoming more and more important.
Unfortunately, according to extensive measurements, TCP
has a number of performance issues in this new environ-
ment, including extremely long delay and sub-optimal
throughput. The reasons behind such performance degrada-
tions are two-fold. First, most of the widely deployed TCP
implementations use loss-based congestion control where
the sender will not slow down its sending rate until it sees
packet loss. Second, most cellular networks are over-buff-
ered to accommodate the bursty traffic and channel variabil-
ity [12, 7]. The combination of these two facts leads to the
following phenomenon: the TCP sender keeps increasing its
sending rate to probe the available bandwidth along the path.
Even if it has already reached the bottleneck link capacity,
the congestion window will continue to grow since all the
overshot packets are absorbed by the buffers and are not lost.
This results in a long queue in the cellular base station and
up to several seconds of end-to-end delay. This long queuing
not only affects the performance of delay-sensitive applica-
tions like video streaming (video streaming applications like
YouTube use TCP) but also degrades throughput perfor-
mance of TCP.

To solve this problem, Android phones adopt a simple
trick: a static upper limit is set on the maximum receive
buffer size. Since the advertised receive window cannot
exceed the receive buffer size and the sender cannot send
more than what is allowed by the advertised receive window,
this limit effectively prevents TCP congestion window from
excessive growth (see FIGS. 1(a) and 1()). However, since
the limit is statically configured, it is sub-optimal in certain
scenarios and will degrade TCP performance in both
throughput and delay.

Accordingly, in light of these difficulties, there exists a
need for receiver-based methods, systems, and computer

10

15

20

25

30

35

40

45

50

55

60

65

2

readable media for controlling TCP sender behavior in
cellular communications networks with large buffer sizes.

SUMMARY

Receiver-based methods for controlling TCP sender
behavior in cellular communications networks with large
buffer sizes are disclosed. One method includes, at a TCP
receiver, receiving packets from a TCP sender. The method
further includes determining, based on the packets, a mini-
mum round trip time and a moving average round trip time
for cellular network carrying the packets between the TCP
sender and the TCP receiver. The method further includes
adaptably adjusting a received window size to advertise to
the TCP sender based on the minimum round trip time and
the moving average round trip time. The method further
includes advertising the adjusted received window sizes to
the TCP sender.

As used herein, the term “cellular network™ includes
network technologies through which mobile communica-
tions devices, such as mobile telephones, smart phones,
tablet computers, notebook computers, and laptop comput-
ers access a network. The term “cellular network™ is not
limited to any particular generation of network access tech-
nologies and is intended to include, but not be limited to, 2G,
3@, 4G, and subsequent generation mobile communications
device network access technologies.

The subject matter described herein for controlling TCP
sender behavior in cellular communications networks with
large buffer sizes may be implemented in hardware, soft-
ware, firmware, or any combination thereof. As such, the
terms “function” or “module” as used herein refer to hard-
ware, software, and/or firmware for implementing the fea-
ture being described. In one exemplary implementation, the
subject matter described herein may be implemented using
a computer readable medium having stored thereon com-
puter executable instructions that when executed by the
processor of a computer control the computer to perform
steps. Exemplary computer readable media suitable for
implementing the subject matter described herein include
non-transitory computer-readable media, such as disk
memory devices, chip memory devices, programmable logic
devices, and application specific integrated circuits. In addi-
tion, a computer readable medium that implements the
subject matter described herein may be located on a single
device or computing platform or may be distributed across
multiple devices or computing platforms.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the subject matter described
herein will now be explained with reference to the accom-
panying drawings, wherein like reference numerals repre-
sent like parts, of which:

FIGS. 1(a) and 1(b) are graphs illustrating abnormal TCP
behavior in cellular networks: in this test, the Android phone
or iPhone simply downloads a 9 MB file from a Linux
server. RTT and congestion window are monitored on the
server side via tcpprobe [9]. More details on the test envi-
ronment can be found in Section 4.1.

FIGS. 2(a) and 2(b) are graphs illustrating TCP behavior
in AT&T’s HSPA network and Sprint’s EV-DO network
when we set the maximum receive buffer size of Android
phones to a huge value. Without the constraints of the
maximum receive buffer, TCP constantly overshoots to a
great extent and results in huge queuing delay.
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FIGS. 3(a) and 3(b) are graphs illustrating TCP behavior
in AT&T’s HSPA network when the Android phone has a
weak signal. In this scenario, despite the maximum receive
buffer size is imposed, RTT can still rise up to several
seconds.

FIGS. 4(a)-4(c) are graphs illustrating TCP behavior in
AT&T’s HSPA network when the Android phone has a good
signal. We set the maximum receive buffer size of Android
phones to 262144 bytes (Default) and 524288 bytes respec-
tively. The increased limit has improved TCP throughput
without introducing extra delay.

FIG. 5 is a network diagram illustrating an exemplary test
environment for the subject matter described herein.

FIGS. 6(a) and 6(b) are graphs illustrating average
throughput and RTT comparison between untouched
Android and queue aware right sizing (QRS) in various
scenarios. The bars are the 95% confidence intervals. QRS
increases TCP throughput while decreasing its RTT across
all scenarios we have tested.

FIGS. 7(a)-7(d) are graphs illustrating TCP behavior
comparison between untouched Android and QRS in
AT&T’s HSPA network when the phone has a good signal.
QRS will probe above the static limit and give more space
to the sender. Hence, QRS achieves higher throughput.

FIGS. 8(a) and 8(b) are graphs illustrating a TCP behavior
comparison between untouched Android and QRS in
AT&T’s HSPA network when the phone has a weak signal.
QRS effectively puts the RTT under control while untouched
Android experiences several seconds of RTT.

FIGS. 9(a) and 9(b) are graphs illustrating a TCP behavior
comparison between untouched Android and QRS in
Sprint’s EV-DO network when the phone has a weak signal.
QRS effectively puts the RTT under control while untouched
Android experiences several seconds of RTT.

FIGS. 10(a) and 10(b) are graphs illustrating a TCP
behavior comparison between untouched Android and QRS
in AT&T’s HSPA network when the phone moves from an
area with good signal to an area with weak signal and then
returns. QRS nicely tracks the variation of the channel
condition and has a constantly low RTT.

FIGS. 11(a) and 11(b) are graphs illustrating RTT and
throughput fluctuation between 1 AM and 10 PM in AT&T’s
HSPA network.

FIG. 12 is a block diagram illustrating a system for use at
a TCP receiver for controlling TCP sender behavior in
cellular communications networks with large buffer sizes
according to an embodiment of the subject matter described
herein.

FIG. 13 is a flow chart illustrating an exemplary method
for use at a TCP receiver for controlling TCP sender behav-
ior in cellular communications networks with large buffer
sizes according to an embodiment of the subject matter
described herein.

FIG. 14 is a flow chart illustrating exemplary adjustment
of a receive window size according to an embodiment of the
subject matter described herein.

DETAILED DESCRIPTION

The subject matter described herein includes an adaptive
receive window adjustment algorithm referred to herein as
Queue-aware Right-Sizing (QRS). QRS runs on the receiver
side and continuously monitors the round-trip time (RTT) of
the TCP connection and the amount of data received within
each RTT. The latter is a rough estimate of the current
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congestion window (cwnd) at the sender and serves as a
basis of a receive window (rwnd) adjustment algorithm.
Basically, we set rwnd to y*cwnd where v is proportional to
the ratio between the minimum RTT and the currently
estimated RTT (RTTmin/RTTest). When the current RTT is
close to the minimum RTT we have observed so far, we
advertise a large window to give the sender enough space to
probe the available bandwidth. As RTT increases due to
queuing delay, we gradually advertise a smaller window
relative to the estimated congestion window to prevent it
from excessive growth. Our extensive experiments over two
major U.S. carriers (AT&T, which uses HSPA and Sprint,
which uses EV-DO) with various Android smart phones
from different manufacturers show that, QRS is able to
decrease the end-to-end delay of TCP by up to 35.88% and
increase its throughput by up to 54.26%!

Our proposal requires modifications only on the receiver
side and is fully compatible with existing TCP protocol. This
makes QRS easy to deploy. Carriers or device manufacturers
can simply issue an update to the hand-held devices’ pro-
tocol stack so that these devices could immediately enjoy
much better performance when interacting with existing
servers.

In summary, the subject matter described herein includes:

A description of extensive experiments conducted to
diagnose the performance problem of TCP over cellular
networks and located the root cause of the problem.

A description of QRS, a solution that is immediately
applicable to smart phones and compared its perfor-
mance with existing approaches in a number of differ-
ent scenarios.

This document is organized as follows. Section 2 details
the problems we have discovered in TCP over cellular
networks and analyses its root cause. We elaborate our
solution in Section 3 and evaluate its performance in various
scenarios in Section 4. The pros and cons of QRS as well as
other alternative solutions are discussed in Section 5. Sec-
tion 6 discusses conclusions.

2 TCP FAILS IN CELLULAR NETWORKS

In September 2009, David P. Reed reported on the end-
to-end interest mailing list that up to 10 seconds of RTT with
low packet loss was observed when he tried to ping an MIT
server from Chicago using AT&T’s Mercury mobile broad-
band modem [16]. We conducted a similar experiment with
both Android phones and iPhone over AT&T’s HSPA net-
work, Sprint’s EV-DO network as well as Verizon’s LTE
network. We recorded the congestion window and RTT of
the TCP connection who downloads a 9 MB file from a
university server to the smart phone. The results are shown
in FIG. 1.

We did not see an extremely long RTT in this experiment
but observed a strange pattern in the evolution of the TCP
congestion window. As FIG. 1(b) shows, the familiar saw-
tooth behavior of TCP congestion window does not appear.
Instead, the congestion window increases to a static size and
stays there for a long time. This abnormal phenomenon
caught our attention and revealed an untold story of TCP
over cellular networks.
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TABLE 1

Maximum TCP receive buffer size (Byte) for various networks on
different Android phones. Note that these values may vary on customized
ROMs and can be looked up by looking for “setprop net.tep.buffersize.*”

in the init.rc file of the Android phone. Also note that different
values are set for different carriers even if the network types
are the same. We suspect that these values are determined
based on each carrier’s network conditions.

Samsung Galaxy S II for AT&T HTC EVO Shift for Sprint

Wi-Fi 110208 110208
UMTS 110208 393216
EDGE 35040 393216
GPRS 11680 393216
HSPA 262144 N/A

WIMAX N/A 524288
Default 110208 110208

Most of the current 3G networks are over-buffered (or
buffer-bloated as termed by [7]). These excessive buffers
were originally introduced into cellular networks due to a
number of reasons. First, the channel status of 3G links
fluctuates quickly and the corresponding channel rate varies
from dozens of Kbps to several Mbps. Second, the data
traffic over such links is highly bursty. To absorb such bursty
traffic over such a variable channel, the simple yet effective
approach adopted by current 3G networks is to provide large
buffers. These buffers smooth the bursty traffic and reduce
the packet loss rate in cellular networks. Further, due to the
relatively high bit error rate over the wireless channel, link
layer retransmission is typically performed in cellular net-
works, which also requires large buffers in the routers or
base stations to store the unacknowledged packets.

Providing large buffers seems to be a viable solution at
Layer 2, but it has an undesirable interaction with the TCP
congestion control algorithm at Layer 4. TCP relies on
packet loss to detect network congestion. Although other
variants such as delay-based congestion control exist, most
of'the widely deployed TCP implementations (e.g., Newreno
[5], BIC [18], CUBIC [8]) still use loss-based congestion
control [19]. Excessive buffers in cellular networks prevent
packet losses from happening even if TCP’s sending rate far
exceeds the bottleneck link capacity. This “hides” the net-
work congestion from the TCP sender and makes its con-
gestion control algorithm malfunction.

Therefore, what happens in FIG. 1(5) is that cwnd keeps
increasing until it reaches the advertised rwnd and stays
there forever. It cannot increase further since data transmis-
sion is governed by the minimum of cwnd and rwnd. It will
not decrease since no packet is lost. This strange phenom-
enon completely voids TCP congestion control, which tries
to find an appropriate sending rate by probing and back-off.
Instead, cwnd at the sender is almost directly determined by
the maximum receive buffer size configured on the receiver
side. This size is strategically configured on different
Android phone models for different networks (Table 1) and
is much lower than that of the desktop distributions (e.g.,
Ubuntu has a maximum receive buffer size 03514168 bytes
by default). As for iPhone, we are not sure about its internal
operations. But as the test results show, the iPhone seems to
have done something similar. Now the question is: why do
they do this? Is it only because smart phones have limited
memory?

To answer this question, we conducted the same experi-
ment but set the maximum receive buffer size to a very large
value that it is almost infinity for any practical purpose. The
results are shown in FIG. 2. After removing the upper bound
imposed by the maximum receive buffer size, we could see
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the RTT rise up to nearly 10 seconds in the worst case. This
explains why Android sets those values for various net-
works: due to the excessive buffers in cellular networks,
TCP congestion control does not function properly on its
own. It constantly overshoots the underlying bandwidth-
delay product (BDP) to a great extent. For instance, the peak
downlink rate for EV-DO is 3.1 Mbps. If the RTT of the
underlying path is 150 ms (that’s the minimum RTT we
observed in FIG. 2(a)), the actual BDP is only 58125 bytes.
But in FIG. 2(4) the congestion window in the Sprint
network rockets to over 1200000 bytes! The overshot pack-
ets are all absorbed by the buffers and no packet gets lost.
Hence, TCP sender incessantly increases its congestion
window and incurs huge queuing delay.

By comparing FIG. 1 and FIG. 2, we can see that the
simple scheme adopted by Android does help mitigate the
problem. Android prevents TCP sender’s congestion win-
dow from exorbitant overshooting and controls the RTT
within one second. However, since these upper limits are
statically configured, they are engineered for the average
case and are sub-optimal in other cases. They may be too
high for some scenarios and could not prevent TCP window
from excessive growth, resulting in long queuing delay.
They may also be too low for some other scenarios and
degrade TCP throughput. FIG. 3 and FIG. 4 illustrate these
two scenarios.

In FIG. 3, we performed the test in an area where the 3G
signal is very weak. In such a scenario, the BDP of the
underlying network is small and the static limits imposed by
Android are too high for it. Therefore, we see the RTT rise
up to several seconds. Comparing this with FIG. 1, we
observe similar behavior in TCP congestion window but
drastically different RTT performance. This clearly demon-
strates the limitation of the static approach

FIG. 4 shows the other scenario where the static limits are
too low and degrade TCP performance in terms of through-
put. Here we manually increase the static limit imposed by
Samsung Galaxy S II for AT&T’s HSPA network from
262144 bytes to 524288 bytes and compare their perfor-
mance in both delay and throughput. As FIG. 4(a) shows, the
two thresholds lead to similar RTT performance, implying
that the increased limit does not incur more congestion in the
network. However, it does improve TCP throughput. FIG.
4(c) plots the number of bytes acknowledged by the receiver
versus time. Hence, the slope of this curve reflects the
throughput of TCP. The steeper the curve, the higher
throughput TCP achieves. Obviously, the increased thresh-
old leads to better throughput performance without intro-
ducing extra queuing delay. This demonstrates that the static
limit set by Android is too low for this scenario and
underutilizes the network.

In summary, the simple technique of statically setting an
upper limit leads to sub-optimal performance in many
scenarios. We need an adaptive receive window adjustment
algorithm to advertise a proper window to the sender so that
it can fully utilize the available bandwidth while avoiding
network congestion. This task originally belongs to the
congestion control algorithm of TCP. But due to the buffer-
bloat problem, loss-based congestion control is no longer
effective in cellular networks. Hence, we propose QRS, a
receiver-driven solution that is backward-compatible and
incrementally deployable. Alternative solutions such as
changing TCP congestion control algorithm on the sender
side are discussed in Section 5.

3 OUR SOLUTION

Before describing our adaptive receive window adjust-
ment algorithm, let us first take a look at how receive
window is determined in the current TCP implementations.
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3.1 The Vicious Cycle of Dynamic Right-Sizing in Cellular
Networks

TCP receive window was designed to prevent a fast
sender from overwhelming a slow receiver. This window
reflects the available buffer size on the receiver side so that
the sender will not send more packets than the receiver can
accommodate. The combination of this flow control and
TCP congestion control ensures that neither the receiver nor
any intermediate router along the path will be overloaded.

With the advancement in storage technology, memories
are becoming cheaper and cheaper. Nowadays, it is not
uncommon to find a computer equipped with several giga-
bytes of memory and even smart phones are now equipped
with 1 GB of RAM (e.g. Motorola Droid Bionic, Samsung
Galaxy S II). Hence, buffer size on the receiver side is hardly
the bottleneck in the current Internet. To maximize TCP
throughput, a receive buffer auto-tuning technique called
Dynamic Right-Sizing (DRS [4]) was proposed. In DRS,
instead of determining the receive window based on the
available buffer size, we dynamically resize the receive
buffer so as to suit the connection’s demand. The funda-
mental goal of DRS is to allocate enough buffer (as long as
we can afford it) so that the throughput of the TCP connec-
tion is never limited by the receive window size but only
constrained by network congestion.

Algorithm 1 below gives the details of DRS. In DRS, we
first measure the RTT of the TCP connection at the receiver.
Strictly speaking, RTT is the time between when data is sent
and the corresponding acknowledgement is received. How-
ever, since the receiver typically has no data to send, it is
hard to measure RTT on the receiver side. DRS exploits a
particular definition of RTT which is the time between when
a byte is first acknowledged and the receipt of data that is at
least one window beyond the sequence number that was
acknowledged. Although there is some deviation, this RTT
measurement is proved to be good enough for the purpose.

Algorithm 1 DRS

Initialization:
rwnd <- 0;
RTT Estimation:
RTT,,, <- the time between when a byte is first acknowledged and the
receipt of data that is at least one window beyond the sequence number
that was acknowledged;
Dynamic Right-Sizing:
if data is copied to user space then
if elapsed_ time < RTT,,, then
return;

end if

cwnd,,, <- data_ revd;

rwnd <- max{2* cwnd,rwnd};

rwnd <- min{tep__rmem__ max,rwnd};

Advertise rwnd as the receive window size;

end if

Once the RTT is known, the current congestion window
of the sender can be trivially estimated on the receiver side
by counting the amount of data received within one RTT.
Since TCP congestion window can at most double within an
RTT (e.g., during slow start), DRS set the advertised receive
window to be twice of the estimated congestion window so
that the TCP sender is always congestion-window-limited
rather than receive-window-limited. Further, since the TCP
sender may be application-limited and have not fully used
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the congestion window, the data received in an RTT may be
smaller than the actual window size. DRS therefore uses the
largest estimated congestion window seen during any RTT.
Note that this makes adjustment of the receive window in
DRS non-decreasing. It is acceptable because the sole goal
of DRS is to set the congestion window “free” from the
constraints of the receive window. It does not matter if the
advertised receive window is too large. Finally, the receive
window is of course bound by the maximum receive buffer
size.

Linux adopted a receive buffer auto-tuning scheme simi-
lar to DRS since kernel 2.4.27. Other major operating
systems also implemented certain kind of TCP buffer auto-
tuning (Windows since Vista, Mac OS X since 10.5,
FreeBSD since 7.0). This implies a significant role change of
TCP receive window. Although the functionality of flow
control is still preserved, most of the time the receive
window is set to a value that lets TCP congestion control
fully explore the available bandwidth while preventing the
receiver from allocating unnecessarily large buffers to a
connection.

Although DRS works fairly well in traditional networks
and improves TCP throughput to a great extent, it actually
incurs a vicious cycle in cellular networks. When the con-
gestion window of the TCP sender increases, more packets
are clocked out within an RTT and are queued in the buffer.
This leads to longer queuing delay and longer RTT measured
by the receiver which increases its estimation of the sender’s
congestion window. Since DRS requires the receive window
to keep in pace with the growth of the congestion window,
the advertised window will be increased, leaving more space
for the congestion window to grow. This ever increasing
trend will stop only if the bloated buffers are filled up so that
packets start to get lost or the advertised receive window
reaches the maximum receive buffer size. The current solu-
tion adopted by many vendors to break this vicious cycle, as
shown in Section 2, is to set a relatively small maximum
receive buffer size. This simple fix has been shown to be
sub-optimal; hence we propose QRS to refine the window
adjustment algorithm of DRS.

3.2 Queue-Aware Right-Sizing

QRS is built on top of DRS. Instead of a unidirectional
adjustment where the advertised window is non-decreasing,
we need a bidirectional adjustment algorithm to rein TCP in
the buffer-bloated cellular networks but at the same time
ensure full utilization of the link. To accomplish that, QRS
needs to keep the queue size small but non-empty. That is
why we call our scheme “queue-aware” right-sizing. Algo-
rithm 2 below gives details of QRS.

Algorithm 2 QRS

Initialization:

RTT,,;, <— ;
cwnd,,, <— data_rcevd in the first RTT,,;
rwnd <— 0;

Minimum RTT Estimation:

if TCP timestamp option is available then

RTT,,, <— averaging the RTTs calculated from the timestamps;
el RTT,,, <— the time between when a byte is first acknowledged and
the receipt of data that is at least one window beyond the sequence num-
ber that was acknowledged;
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-continued

Algorithm 2 QRS

end if

if RTT,,, < RTT,,,, then
RIT,,, <— RIT.;

end if

Queue-aware Right-Sizing:

if data is copied to user space then
if elapsed_time < RTT,,, then
return;
end if
cwnd,,, <— a*cwnd,,, + (1 — a) * data_rcvd;

RTTmin

d < — A7
wnd < M R Test

# CWndeg;

rwnd <— min{tcp_rmem_max, rwnd};
Advertise rwnd as the receive window size;
end if

QRS uses almost the same technique as DRS to measure
RTT on the receiver side. One difference is that, if the TCP
timestamp option is available in the packets, we use that to
obtain a more accurate estimation of RTT. In addition to
RTT measurement, QRS also records the minimum RTT
ever seen in this connection and use it later to determine the
receive window size. Since the minimum RTT approximates
the round-trip propagation delay between the two hosts
when no queue is built up in the intermediate routers, we use
it as a criterion to determine whether the network is con-
gested.

After knowing the RTT, QRS counts the amount of data
received within one RTT in the same way as DRS. However,
QRS further smooths the estimated congestion window by
applying a low-pass filter (o is set to 7/8 in our current
implementation). This smoothed value is used to determine
the receive window we advertise. In contrast to DRS, which
always sets rwnd to 2*cwnd,,, QRS sets rwnd to

estd

RTTmin
* RTTest

* CWhd,g;.

When RTT,,, is close to RTT,,,,,, implying the network is not
congested, rwnd will be set to a large value to give the
sender enough space to probe the available bandwidth. As
RTT,,, increases, we gradually decrease rwnd to stop TCP
from overshooting. The operation of taking the maximum of
the newly calculated rwnd and the previous rwnd in DRS is
also removed so that QRS makes bidirectional adjustment of
the advertised window. RTTest is continually calculated, and
thus constitutes a moving average RTT that is used to
continually adjust receive window size.

This algorithm is simple yet effective. Its ideas stem from
delay-based TCP congestion control but work better than
delay based TCP congestion control due to some unique
characteristics of cellular networks. In wired networks, a
router may handle hundreds of TCP flows at the same time,
and the flows may share the same output buffer. That makes
RTT measurement more noisy and delay-based congestion
control less reliable. However, in cellular networks, a base
station typically has separate buffer space for each user and
a mobile user is unlikely to have many simultaneous TCP
connections. This makes RTT measurement a more reliable
signal for network congestion.

10

15

20

40

45

55

10

In QRS, A tunes the aggressiveness of the algorithm and
demonstrates the trade-off between throughput and delay.
Note that when RTT,/RTT,,,, equals to A, the advertised
receive window will be equal to the estimated congestion
window, leading to a steady state. Therefore, A reflects the
target RTT of QRS. If we set A to 1, that means we want RTT
to bearound RTT,,,, so that almost no queue is built up. This
ideal case only works if 1) the traffic has constant bit rate, 2)
the available bandwidth is also constant and 3) the constant
bit rate equals to the constant bandwidth. In practice, Inter-
net traffic is bursty and the channel condition varies over
time. Both necessitate the existence of some buffers to
absorb the temporarily excessive traffic and drain the queue
later on when the load becomes lighter or the channel
conditions are better. Otherwise, we cannot fully utilize the
link. This A determines how aggressive we want to be to
keep the link busy and how much delay penalty we can
tolerate. The larger the value of A, the more aggressive the
algorithm. That may increase the throughput of TCP but at
the same time introduce extra delay. In our current imple-
mentation, we empirically set A to 4 based on our experi-
ences with current cellular networks. A better approach may
be to make this parameter adaptive or set a different A for
different networks run by different carriers (just like how
Android set the maximum receive buffer size).

3.3 Benefits Brought by QRS

QRS is an adaptive receive window adjustment algorithm.
Compared to the naive approach adopted by Android phones
where a static limit is imposed, QRS brings the following
benefits.

QRS increases TCP throughput when the link condition is
good. In this case, the static limit is too low and
degrades TCP performance in terms of throughput.
QRS will instead adaptively adjust the receive window
size to let TCP fully utilize the link capacity.

QRS decreases the latency when the link condition is bad.
Here the static limit is too high and TCP congestion
window will excessively grow to that limit. This puts
too many packets in the pipe and introduces extra
queuing delay. QRS will rein TCP in this case and
reduce its RTT.

When the link condition is fluctuating between good and
bad, both throughput and RTT gains can be obtained. In
most practical scenarios, we can expect both gains
because this case commonly happens in cellular net-
works.

We will validate these benefits via extensive experiments in
the following section.

4 PERFORMANCE EVALUATION

4.1 Test Environment

We implemented QRS in Android phones by patching
their kernels. It turns out to be fairly simple to implement
QRS in the Linux kernel. It takes merely around 100 lines
of code. We downloaded the original kernel source codes of
different Android models from their manufacturers’ web-
sites. Then we patched them with our QRS algorithm and
rebuilt the kernels. Finally, the phones were flashed with the
customized kernel images. Of course, the previously pre-set
values of the maximum receive buffer size need to be
increased to allow QRS enough room for adjustment.

We did head-to-head comparisons between the untouched
Android phone and the same model with our customized
image. FIG. 5 gives an overview of our test environment. We
have two servers from which the Android phones download
files: one at North Carolina State University in the United
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States and one at KAIST in Korea. Since all the smart
phones were located at NCSU, we evaluate both scenarios
where files are downloaded from a nearby server or a remote
server. The servers run Ubuntu 10.04 (kernel version:
2.6.35.13) and use CUBIC [8] as the TCP congestion control
algorithm. We developed an Android application that down-
loads files from the designated servers and ran it on the
phone side. Traffic traces were collected on the server side
using tcpdump [1] and analyzed using tcptrace [14]. Internal
states of TCP (such as cwnd) are probed with the help of the
Web100 project [13].

We ran extensive tests in various network scenarios with
different carriers, time frames, signal strengths and so on.
Table 2 sums them up. For AT&T’s HSPA network, we used
Samsung Galaxy S II (Android version: 2.3.4). For Sprint’s
EV-DO network, HTC EVO Shift (Android version: 2.2)
was used. All tests have been repeated for at least 50 times
and 95% confidence intervals are calculated wherever appli-
cable.

TABLE 2
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shows that QRS helps reduce RTT during daytime but
performs similarly to untouched Android during midnight.
4.3 Microscopic Analysis

In addition to the macroscopic analysis of TCP perfor-
mance in terms of average throughput and RTT, we also pick
a few typical cases and analyze their detailed operations
such as cwnd and rwnd evolution.
4.3.1 Good Signal Case Study

FIG. 7 shows the evolution of receive window, congestion
window, RTT and number of bytes acknowledged over time
when the phone has good signal condition. In this case, the
static limit on the untouched Android phone stops TCP
congestion window from further growth and degrades
throughput performance. Instead, QRS is able to give the
sender more space to probe and hence achieves higher
throughput. RTT of the TCP connection is always kept
below 1 second in this scenario (FIG. 7(c)).

If we take a closer look at FI1G. 7(a) and FIG. 7(d), we can
see that QRS and untouched Android phones advertise

List of scenarios we have tested: note that good signal strength means

between —80 dBm and -85 dBm while weak signal strength means

between —100 dBm and -105 dBm. Also note that daytime includes
the evening since the traffic load is still high at that time. We contrast

this with midnight when the traffic load is very low.

Carrier Time Signal  Mobility  Server Throughput RIT
Scenario 1 AT&T  Daytime Good Stationary NCSU +54.26% -24.03%
Scenario 2 AT&T  Daytime Weak  Stationary NCSU +52.14% -35.88%
Scenario 3 AT&T  Midnight Good Stationary NCSU +17.49% -1.58%
Scenario 4 AT&T  Whole Day  Good Stationary NCSU +23.07% -20.79%
Scenario 5 AT&T  Daytime Varying Mobile NCSU +21.49% -11.08%
Scenario 6 AT&T  Daytime Good Stationary KAIST +13.82% -19.46%
Scenario 7 Sprint  Daytime Good Stationary NCSU +4.70% -2.69%
Scenario 8 Sprint  Daytime Weak  Stationary NCSU +10.10% -19.26%
Scenario 9 Sprint  Midnight Good Stationary NCSU +% -%

4.2 Macroscopic Performance

FIG. 6 shows the average RTT and throughput compari-
son between untouched Android phones and Android phones
equipped with our customized image that runs QRS.
Detailed numbers of the performance improvements can be
found in Table 2. From these testing results we can see that
QRS increases the average TCP throughput while decreasing
the average RTT across all scenarios we have tested. Among
these scenarios, Scenario 1 shows the most throughput
improvement (54.26%) while Scenario 2 shows the most
RTT reduction (35.88%). This completely agrees with our
prediction in Section 3.3 that QRS increases TCP throughput
under good signal condition and decreases latency under
weak signal condition.

Note that the average throughput in Sprint’s 3G network
is much lower than that of AT&T. That’s because AT&T uses
HSPA technology whose peak downlink rate is 14 Mbps
while Sprint uses EV-DO technology whose peak downlink
data rate is only 3.1 Mbps. QRS can barely increase TCP
throughput in EV-DO network even under good signal
strength since there is little room for improvement. But it
significantly decreases the RTT in EV-DO networks when
the signal strength is weak.

Another thing to note is that, in Scenario 3, QRS shows
almost the same RTT as untouched Android. That’s because
Scenario 3 was carried out at midnight where there’s little
traffic. The static upper limit imposed by Android is too low
in this case and does not cause too much queuing delay. This
is confirmed by our whole day test in Scenario 4. FIG. 11(a)
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similar receive window sizes before 6 s and hence have
similar throughput performance (Note that in FIG. 7(d) the
derivative of the curve at a point reflects the instantaneous
throughput at that time). After that, the untouched Android
phone reaches the static limit and advertises a constant
window size, leading to an almost constant throughput (its
curve in FIG. 7(d) is nearly straight). On the other hand,
QRS probes above that static limit after 6 s and achieves
higher throughput (steeper line than untouched Android
between 6 s and 8 s). Note that QRS may overshoot a bit
during the probing phase. However, QRS quickly corrects
itself and slows down between 8.5 s and 9.5 s (flatter line in
FIG. 7(d)). After that it starts to probe again and achieves a
higher average throughput than untouched Android. This
case study clearly demonstrates the effectiveness of the
window adjustment algorithm in QRS. The higher through-
put is not gained by aggressive transmission. Instead, it acts
exactly like what TCP congestion control should have done.
In certain sense, the receive window in QRS plays the role
of bandwidth probing in place of the congestion window
when the latter loses its functionality due to the bloated
buffers in cellular networks.
4.3.2 Weak Signal Case Study

FIG. 8 and FIG. 9 show the weak signal scenario in AT&T
and Sprint networks respectively. In both cases, QRS adver-
tises smaller receive windows than the static limit. The effect
is obvious: we see a much lower RTT than untouched
Android phones. When their RTTs rise up to several sec-
onds, QRS constantly keeps the RTT below 1 second. If we
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take a more detailed look into FIGS. 8 and 9, we can see that
QRS manages to keep the RTT to be around 500 ms, which
is about four times of the minimum RTT (116 ms in AT&T
and 120 ms in Sprint). This is exactly the target value of our
algorithm (A is set to 4 in the current implementation).
4.33 Transition Case Study

To evaluate whether QRS is able to track the variability of
channel conditions, we ran a mobile test case where we
move the Android phone from a good signal area to a weak
signal area and then return back to the good signal area. FIG.
10 shows the evolution of the receive window and the RTT
over this period. As FIG. 10(a) shows, QRS effectively
traces the fluctuation of the signal condition and adjusts the
receive window accordingly, leading to a steadily low RTT.
On the other hand, the static limit imposed by Android
results in an ever increasing RTT as the signal strength
decreases and an RTT hike when it is weakest at around 40
s.
4.3 .4 Performance Fluctuation within a Day

FIG. 11 shows the detail of Scenario 4. In this scenario,
we run consecutive tests (with 2-minute interval) for 21
hours (from 1 AM till 10 PM) within one day and observe
the performance fluctuation. As the figure shows, during
midnight QRS has similar RTT performance to untouched
Android phones since the network is not congested. How-
ever, during daytime QRS drastically reduces the end-to-end
latency of TCP.

On the throughput side, one obvious trend is that the
average throughput during midnight is higher than that of
daytime. This is intuitive. But despite the time of day, QRS
always shows higher average throughput than untouched
Android.

5 DISCUSSION

5.1 Fairness Concerns

Traditionally, fairness is a major concern in TCP design
since the congestion control algorithms directly determines
how bandwidth are shared at the bottleneck link. In cellular
networks, base stations typically adopt certain opportunistic
scheduling algorithms (e.g. Proportional Fair scheduler) to
improve overall system throughput under some fairness
constraints [11]. The existence of such schedulers alleviates
TCP’s responsibility on ensuring fairness among competing
flows and gives more freedom to the design of TCP. Since
the last-hop cellular network is the most likely bottleneck of
the path and the opportunistic schedulers at the base stations
impose certain degree of fairness, we believe QRS will not
incur serious fairness issues in the Internet.

5.2 Alternative Solutions

To solve TCP’s performance problem in buffer-bloated
cellular networks, there are many other possible solutions
than adjusting the receive window.

One possible solution is to reduce the buffer size in
cellular networks so that TCP can function the same way as
it does in wired networks. However, as explained in Section
2, these extra buffers are essential to the performance of
cellular networks and cannot be easily removed. An alter-
native to this solution is to employ certain Active Queue
Management (AQM) schemes like RED [6] or REM [2]. By
randomly drop or mark certain packets before the buffer is
full, we can notify TCP sender in advance and avoid the
excessively long delay. However, despite being studied
extensively in the literature, few AQM schemes are actually
deployed in the Internet due to the complexity of their
parameter tuning and the limited performance gains pro-
vided by them.

10

15

20

25

30

35

40

45

50

55

60

65

14

Another possible solution to this problem is the modifi-
cation of the TCP congestion control algorithm at the sender.
Instead of a loss-based approach, delay-based congestion
control such as TCP Vegas [3] or FAST TCP [17] can be used
in this case. However, delay-based congestion control algo-
rithms have their own drawbacks, including the noise in
RTT measurement and TCP-friendliness issues. Further,
adopting delay-based congestion control requires modifica-
tions on the sender sides which are typically large-scale
servers. And modifying the TCP stack on the servers will
impact all the clients no matter they are on a wired network
or a cellular network. QRS requires modifications only on
the receiver side (i.e., the mobile devices). The servers need
absolutely no modification. Mobile devices can update their
protocol stack to enhance their own TCP performance
without affecting other wired users. It is a light-weight yet
effective solution to the problem.

6 CONCLUSION

As described herein, we thoroughly investigated TCP’s
behavior and performance over cellular networks. We reveal
that the excessive buffers available in existing 3G networks
void the loss-based congestion control algorithm used by
most TCP implementations and the naive solution adopted
by Android is sub-optimal. Built on top of our observations,
an adaptive receive window adjustment algorithm is pro-
posed. This solution requires modifications only on the
receiver side and is backward-compatible as well as incre-
mentally deployable. We ran extensive experiments over
two major U.S. carriers to evaluate the performance of our
proposal and compared it with other existing solutions.
Experiment results show that our scheme is able to reduce
the average RTT of TCP by up to 35.88% and enhance the
average throughput by up to 54.26%.

As for the future work, we plan to further refine our
algorithm and evaluate it in broader scenarios. We realize
that the cellular networks operated by different carriers in
different countries may have completely different character-
istics. Our current algorithm is not parameter-free and may
require specialized parameter tuning for different networks.
Our ultimate goal is to make the algorithm self-tuning and
universally applicable.

Finally, as pointed out by [7], the bufferbloat problem is
becoming more and more prevalent in the Internet. It is not
necessarily specific to cellular networks. The problem we
discover in cellular networks (that the excessive buffers void
TCP congestion control) may also happen in other networks
and requires adequate attention from the research commu-
nity since TCP is the transport protocol for millions of
Internet applications.

Exemplary Implementations

FIG. 12 is a block diagram illustrating an exemplary
system for controlling TCP sender behavior in cellular
communications networks with large buffer sizes according
to an embodiment of the subject matter described herein.
Referring to FIG. 12, the system includes a TCP receiver 100
for receiving packets from a TCP sender 102. Receiver 100
includes a dynamic receive window size adjustment module
104 for continually determining, based on the packets, a
minimum round trip time and a moving average round trip
time for a cellular network 106 carrying packets between
TCP sender 102 and TCP receiver 100. Dynamic receive
window size adjustment module 104 adaptively adjusts a
receive window size to advertise to the sender based on the



US 9,444,688 B2

15

minimum round trip time and the moving average round trip
time. Dynamic receive window size adjustment module 104
advertises the adjusted receive window size to sender 102.
TCP receiver 100 may be implemented on any device that
communicates in a cellular network using TCP. Exemplary
devices include mobile telephones, tablet computers, laptop
computers, or other computers that communicate over cel-
Iular networks. TCP sender 102 may be any device in a
cellular network that sends packets to a TCP receiver. For
example, TCP sender 102 may be implemented on a cellular
base station or on a server in the internet.

FIG. 13 is a flow chart illustrating an exemplary method
for use at a TCP receiver for controlling TCP sender behav-
ior in cellular communications networks with large buffer
sizes. Referring to FIG. 13, in step 1300, a TCP receiver
receives packets from a TCP sender. For example, TCP
receiver 100 illustrated in FIG. 12 may receive packets from
TCP sender 102 via cellular network 106. In step 1302, the
TCP receiver continually determines, based on the packets,
a minimum round trip time and a moving average round trip
time for a cellular network carrying the packets between the
TCP sender and the TCP receiver. For example, dynamic
receive window size adjustment module 104 illustrated in
FIG. 12 may continually make the determination of mini-
mum round trip time and moving average round trip time for
packets received from TCP sender 102. In step 1304, the
method includes adaptively adjusting a receive window size
to advertise to the TCP sender based on the minimum round
trip time and the moving average round trip time. For
example, dynamic receive window size adjustment module
104 illustrated in FIG. 12 may adaptively adjust the receive
window size to advertise to TCP sender 102 using any of the
QRS algorithms described herein. In step 1306, the method
includes advertising the receive window size to the TCP
sender. The receive window size may be advertised to the
TCP sender using normal TCP window size advertisement
mechanisms. The receive window size may be the window
size that is dynamically calculated by dynamic receive
window size adjustment module 104.

FIG. 14 is a flow chart illustrating adjustment of a receive
window size. Referring to FIG. 14, in step 1400, it is
determined whether the ratio of the minimum round trip
time and the moving average of the round trip time exceeds
a threshold. If the ratio exceeds the threshold, control
proceeds to step 1402 where the receive window size is
increased. In step 1400, if the ratio does not exceed the
threshold, control proceeds to step 1404 where the receive
window size is decreased.

It will be understood that various details of the subject
matter described herein may be changed without departing
from the scope of the subject matter described herein.
Furthermore, the foregoing description is for the purpose of
illustration only, and not for the purpose of limitation.

REFERENCES

The disclosure of each of the following references is
incorporated herein by reference in its entirety.

[1] tepdump. www.tcpdump.org.

[2] ATHURALIYA, S., Low, S., LI, V., AND YIN, Q. REM:
Active Queue Management Network, IEEE 15 (May
2001), 48-53.

[3] BRAKMO, L. S., O'MALLEY, S. W., AND PETER-
SON, L. L. TCP Vegas: New Techniques for Congestion
Detection and Avoidance. In Proceedings of the confer-
ence on Communications architectures, protocols and
applications (1994), SIGCOMM 94, pp. 24-35.

5

20

30

35

40

45

55

65

16

[4] FENG, W.-C., FISK, M., GARDNER, M. K., AND
WEIGLE, E. Dynamic Right-Sizing: An Automated,
Lightweight, and Scalable Technique for Enhancing Grid
Performance. In Proceedings of the 7th IFIP/IEEE Inter-
national Workshop on Protocols for High Speed Networks
(2002), PIHSN ’02, pp. 69-83.

[5] FLOYD, S., AND HENDERSON, T. The NewReno
Modification to TCP’s Fast Recovery Algorithm. IETF
RFC 2582, April 1999.

[6] FLOYD, S., AND JACOBSON, V. Random Early Detec-
tion Gateways for Congestion Avoidance. [FEE/ACM
Trans. Netw. 1 (August 1993), 397-413.

[7] GETTYS, J. Bufferbloat: Dark Buffers in the Internet.
Internet Computing, IEEE 15, 3 (May-June 2011), 96.
[8] HA, S., RHEE, 1., AND XU, L. CUBIC: a New TCP-
friendly High-speed TCP Variant SIGOPS Oper: Syst.

Rev. 42 (July 2008), 64-74.

[9] HEMMINGER, S. tcpprobe—Observe the TCP flow
with  k-probes. www.linuxfoundation.org/collaborate/
workgroups/networking/tcpprobe.

[10] LAN, K.-c., AND HEIDEMANN, J. A Measurement
Study of Correlations of Internet Flow Characteristics.
Comput. Netw. 50 (January 2006), 46-62.

[11] Liu, X., CHONG, E. K. P, AND SHROFF, N. B. A
Framework for Opportunistic Scheduling in Wireless Net-
works. Comput. Netw. 41 (March 2003), 451-474.

[12] Liu, X., SRIDHARAN, A., MACHIRAJU, S., SES-
HADRI, M., AND ZANG, H. Experiences in a 3G
Network: Interplay between the Wireless Channel and
Applications. In Proceedings of the 14th ACM interna-
tional conference on Mobile computing and networking
(2008), MobiCom ’08, pp. 211-222.

[13] MATHIS, M., HEFFNER, J., AND REDDY, R.
Web100: Extended TCP Instrumentation for Research,
Education and Diagnosis. SIGCOMM Comput. Commun.
Rev 33 (July 2003), 69-79.

[14] OSTERMANN, S. tcptrace, www.tcptrace.org.

[15] QIAN, F., GERBER, A., MAO, Z. M., SEN, S,
SPATSCHECK, O., AND WILLINGER, W. TCP Revis-
ited: a Fresh Look at TCP in the Wild. In Proceedings of
the 9th ACM SIGCOMM conference on Internet measure-
ment conference (2009), IMC *09, pp. 76-89.

[16] REED, D. P. What’s wrong with this picture? The
end2endinterest mailing list, September 2009.

[17] WEIL D. X., JIN, C., LOW, S. H., AND HEGDE, S.
FAST TCP: Motivation, Architecture, Algorithms, Perfor-
mance. [EEE/ACM Trans. Netw. 14 (December 2006),
1246-1259.

[18] Xu, L., HARFOUSH, K., AND RHEE, I. Binary
Increase Congestion Control (BIC) for Fast Long-dis-
tance Networks. In INFOCOM 2004 (March 2004), pp.
2514-2524.

[19] YANG, P, LUO, W., XU, L., DEOGUN, T., AND LU,
Y. TCP Congestion Avoidance Algorithm Identification.
In Distributed Computing Systems (ICDCS), 2011 31st
International Conference on (June 2011), pp. 310-321.

What is claimed is:

1. A method for use at a TCP receiver for controlling TCP
sender behavior in cellular communications networks with
large buffer sizes, the method comprising:

at a TCP receiver:

receiving packets from a TCP sender; continually deter-
mining, based on the packets, a minimum round trip
time and a moving average round trip time for a
cellular network carrying the packets between the
TCP sender and the TCP receiver;
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adaptively adjusting a receive window size to advertise
to the TCP sender based on the minimum round trip
time and the moving average round trip time,
wherein adaptively adjusting the receive window
size includes increasing the receive window size if a
ratio of the minimum round trip time and the moving
average round trip time is less than a threshold value;
and

advertising the adjusted receive window sizes to the
TCP sender.

2. The method of claim 1 wherein the TCP receiver is
implemented on a mobile handset and the TCP sender is
implemented on a cellular base station or a server located in
the Internet.

3. A method for use at a TCP receiver for controlling TCP
sender behavior in cellular communications networks with
large buffer sizes, the method comprising:

at a TCP receiver:

receiving packets from a TCP sender; continually deter-
mining, based on the packets, a minimum round trip
time and a moving average round trip time for a
cellular network carrying the packets between the
TCP sender and the TCP receiver;

adaptively adjusting a receive window size to advertise
to the TCP sender based on the minimum round trip
time and the moving average round trip time; and

advertising the adjusted receive window sizes to the
TCP sender, wherein adaptively adjusting the receive
window size includes decreasing the receive window
size if a ratio of the minimum round trip time and the
moving average round trip time is more than a
threshold value.

4. A system for use at a TCP receiver for controlling TCP
sender behavior in cellular communications networks with
large buffer sizes, the system comprising:

a TCP receiver for receiving packets from a TCP sender;

and

a dynamic receive window size adjustment module for

continually determining, based on the packets, a mini-
mum round trip time and a moving average round trip
time for a cellular network carrying the packets
between the TCP sender and the TCP receiver, adap-
tively adjusting a receive window size to advertise to
the TCP sender based on the minimum round trip time
and the moving average round trip time, and for adver-
tising the adjusted receive window size to the TCP
sender, wherein adaptively adjusting the receive win-
dow size includes increasing the receive window size if
a ratio of the minimum round trip time and the average
round trip time is less than a threshold value.

5. The system of claim 4 wherein the TCP sender is
implemented on a cellular base station or on a server located
in the Internet and wherein the TCP receiver is implemented
on a mobile handset.

6. A system for use at a TCP receiver for controlling TCP
sender behavior in cellular communications networks with
large buffer sizes, the system comprising:

a TCP receiver for receiving packets from a TCP sender;

and

a dynamic receive window size adjustment module for

continually determining, based on the packets, a mini-
mum round trip time and a moving average round trip
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time for a cellular network carrying the packets
between the TCP sender and the TCP receiver, adap-
tively adjusting a receive window size to advertise to
the TCP sender based on the minimum round trip time
and the moving average round trip time, and for adver-
tising the adjusted receive window size to the TCP
sender, wherein adaptively adjusting the receive win-
dow size includes decreasing the receive window size
if a ratio of the minimum round trip time and the
average round trip time is more than a threshold value.

7. A non-transitory computer readable medium compris-
ing computer executable instructions that when executed by
the processor of a computer control the computer to perform
steps comprising:

at a TCP receiver:

receiving packets from a TCP sender; continually deter-
mining, based on the packets, a minimum round trip
time and a moving average round trip time for a
cellular network carrying the packets between the
TCP sender and the TCP receiver;

adaptively adjusting a receive window size to advertise
to the TCP sender based on the minimum round trip
time and the moving average round trip time,
wherein adaptively adjusting the receive window
size includes increasing the receive window size if
the a ratio of the minimum round trip time and the
moving average round trip time is less than a thresh-
old value; and

advertising the adjusted receive window sizes to the
TCP sender.

8. The non-transitory computer readable medium of claim
7 wherein the TCP receiver is implemented on a mobile
handset and the TCP sender is implemented on a cellular
base station or a server located in the Internet.

9. The non-transitory computer readable medium of claim
7 wherein the TCP receiver is implemented on a mobile
handset and the TCP sender is implemented on a cellular
base station or a server located in the Internet.

10. A non-transitory computer readable medium compris-
ing computer executable instructions that when executed by
the processor of a computer control the computer to perform
steps comprising:

at a TCP receiver:

receiving packets from a TCP sender; continually deter-
mining, based on the packets, a minimum round trip
time and a moving average round trip time for a
cellular network carrying the packets between the
TCP sender and the TCP receiver;

adaptively adjusting a receive window size to advertise
to the TCP sender based on the minimum round trip
time and the moving average round trip time,
wherein adaptively adjusting the receive window
size includes decreasing the receive window size if a
ratio of the minimum round trip time and the moving
average round trip time is more than a threshold
value; and

advertising the adjusted receive window sizes to the
TCP sender.



